Unabhängiges Magazin für Wirtschaft und Bildung

28. März 2024

Search form

Search form

Neuartige Quanten-Bits in zwei Dimensionen

Neuartige Quanten-Bits in zwei Dimensionen© TU Wien

Wenn man zwei ultradünne Materialschichten kombiniert, ergeben sich neue Möglichkeiten für die Quanten-Elektronik. Ein internationales Forschungsteam mit TU-Beteiligung zeigt nun flexibel steuerbare Quantensysteme.

Zwei neuartige Materialien, die jeweils nur aus einer einzigen Schicht von Atomen bestehen, und dazu die Spitze eines Rastertunnelmikroskops – das sind die Zutaten, mit denen es nun gelungen ist, eine neue Art sogenannter „Quantenpunkte“ herzustellen. Dabei handelt es sich um winzige Nanostrukturen, die eine ausgezeichnete Kontrolle über einzelne Elektronen erlauben, deren Energie gezielt verändert werden kann. Für moderne Quantentechnologien sind solche Strukturen ein wichtiges Werkzeug.
Die theoretische Arbeit und die Computersimulationen für die neue Technologie kamen vom Team um Florian Libisch und Joachim Burgdörfer an der TU Wien, das Experiment wurde an der RWTH Aachen von der Forschungsgruppe von Markus Morgenstern durchgeführt. Beteiligt daran war auch das Team der nobelpreisgekrönten Graphen-Entdecker Andre Geim und Kostya Novoselov aus Manchester, welche die Materialproben beisteuerten. Die Ergebnisse wurden nun im Fachjournal „Nature Nanotechnology“ publiziert.

Energieunterschiede nach Wunsch einstellen
„Für viele Anwendungen im Bereich der Quantentechnologie braucht man ein Quantensystem, in dem ein Elektron zwei verschiedene Zustände annehmen kann – ähnlich wie ein klassischer Lichtschalter, nur mit dem Unterschied, dass die Quantenphysik auch beliebige Überlagerungen der beiden möglichen Zustände erlaubt“, erklärt Florian Libisch vom Institut für Theoretische Physik der TU Wien.
Eine wichtige Eigenschaft solcher Systeme ist die Energiedifferenz zwischen diesen beiden Quantenzuständen: „Man will in einem solchen System die Information, die in Form des Elektrons abgespeichert ist, möglichst gut kontrollieren, speichern und auslesen können. Dafür wünscht man sich ein System, in dem sich die Energiedifferenz zwischen den beiden Zuständen kontinuierlich einstellen lässt – von fast null bis möglichst groß“, so Libisch.
Bei in der Natur vorkommenden Systemen, etwa in einem Atom, ist das schwierig. Dort sind die Energien und damit die Energiedifferenzen zwischen zwei erlaubten Zuständen fix vorgegeben. Möglich wird das gezielte Ändern des Energieabstands allerdings in synthetisierten Nanostrukturen, in denen Elektronen eingesperrt werden. Man bezeichnet solche Strukturen als „Quantenpunkte“ oder auch als „künstliche Atome“.

Graphen und Bornitrid als ultradünne Materialien
Dem internationalen Forschungsteam von TU Wien, RWTH Aachen und Universität Manchester gelang es nun, neuartige Quantenpunkte zu entwickeln, in dem sich die einzelnen Energieniveaus der Elektronen viel besser und in größerem Ausmaß steuern und kontrollieren lassen als bisher. Möglich wurde das durch eine Kombination von zwei ganz besonderen Materialien: Zum einen Graphen, das aus nur einer einzigen leitenden Schicht von Kohlenstoff-Atomen besteht, zum anderen hexagonales Bornitrid, einem Graphen stark ähnelnden atomar dünnen Material, das aber isolierend ist.
Genau wie Graphen bildet auch Bornitrid eine sechseckig-wabenartige Struktur aus einzelnen Atomlagen. „Die Sechsecke im Graphen und die Sechsecke im Bornitrid sind allerdings nicht exakt gleich groß“, sagt Florian Libisch. „Wenn man nun eine einzige Schicht Graphen sorgfältig auf hexagonales Bornitrid legt, dann passen die beiden Schichten nicht perfekt zusammen, dadurch entsteht eine Superstruktur mit einer Größe von einigen Nanometern, die sich verbiegt und extrem regelmäßige Wellen schlägt.“

Auf dem Weg zu „Valleytronics“
Wie umfassende Berechnungen an der TU Wien zeigten, sind genau diese Verbiegungen einer kombinierten Graphen-Bornitrid-Struktur der ideale Ort, um Elektronen zu kontrollieren. Die regelmäßigen Wellen in der dünnen Struktur bilden dabei eine Potentiallandschaft, in die man mit Hilfe eines Rastertunnelmikroskops den Quantenpunkt punktgenau einpassen oder sogar kontinuierlich verschieben kann. Je nachdem, an welcher Stelle sich die Spitze des Mikroskops befindet, ändern sich die erlaubten Energieniveaus der Elektronen. „Durch eine Verschiebung um wenige Nanometer kann man den Unterschied zwischen zwei benachbarten Elektronen-Energien zwischen -5 und +10 Milli-Elektronenvolt punktgenau einstellen – das ist etwa das Fünfzigfache dessen, was bisher möglich war“, so Libisch.
Die Spitze des Rastertunnelmikroskops könnte in Zukunft durch eine Reihe nanoelektronischer Bauteile ersetzt werden. So sollen die nun entdeckten Möglichkeiten des Kombinationsmaterials aus Graphen und Bornitrid zu einer skalierbaren Quanten-Technologien führen. In solchen Fällen spricht man von „Valleytronics“. „Das ist heute ein vieldiskutiertes Forschungsgebiet, das freilich noch am Anfang steht“, ergänzt Florian Libisch. „Die potenziellen technischen Möglichkeiten dieser ultradünnen Materialien sind jedenfalls vielversprechend und deshalb hat die TU Wien 2017 auch ein Doktorandenkolleg zu diesem Thema ins Leben gerufen.“

Links

red, Economy Ausgabe Webartikel, 23.03.2018